统计的必备知识
统计分为两类,描述性统计和推断性统计。
名词解释:描述性统计
描述性统计(descriptive statistics),主要用于描述和扩大数据*的重要统计特性。
名词解释:推断统计
推断统计(inferential statistics)主要研究如何根据小数据*(样本)的统计特征去推断大数据*的特征。
比如我们知道很多人讲身边越来越多人离婚了,然后得出一个结论现在离婚率高,这就是一个很经典的推断统计。根据身边的样本推断出总体特征。当然,虽然这个结论有待商榷,但是由身边现象到全部情况的确是我们的一种习惯思维,也有些认知偏差的意味在里头。
所以有了统计,自然就有了概率和频率。而一般我们所说的频数又叫绝对频率(abosulute frequency),指总体中各个观测值落在不同区间的次数。
而频数(绝对频率)除以总频数,就得到了相对频率(realative frequency)。
比如抽了20次纸牌,其中抽中2次A。那么频数或绝对频率即为2,频率即为10%。(吐槽一下:还是中学时候讲的频数和频率比较顺,CFA里的定义太拗口。)
统计的度量
对集中程度的度量,一般用的是众数、中位数和平均数。
名词解释:算术平均数
算术平均数(arithemetic mean)最简单,就是所有观测值加总再除以观测值的个数。
算术平均数的特性:所有观测值点到算术平均数的距离之和为零;它非常容易受极值影响。
名词解释:加权平均数
加权平均数(weighted mean)就是给不同观测值配上不同权重,然后求得平均值。
可以说,算术平均数就是加权平均数中所有观测值权重均为1的特殊形态。
名词解释:几何平均数
几何平均数(egeometric mean)是对各变量值的连乘积开项数次方根,最常用的情景就是某投资若干年时间内的平均收益率。
名词解释:调和平均数
调和平均数(harmonic mean)较为少见,又称为倒平均数,是各变量倒数的算术平均数的倒数。比较常用的例子,是计算同样价格总额下,多只股票一段时间内的平均购买成本。
在数学上来讲,调和平均数≤几何平均数≤算术平均数。


